

The NOAA Hydrometeorological Testbed and the NWS Office of Hydrologic Development

David Kitzmiller, Michael Smith, Pedro Restrepo, Dong-Jun Seo

Hydrology Laboratory
Office of Hydrologic Development

NOAA National Weather Service March 3, 2004

OHD efforts related to the NOAA HMT:

- Distributed Hydrologic Modeling
- Snowpack Modeling
- Precipitation Estimation
 - Multisensor analysis
 - Remote sensing
 - Rain gauge observation quality control
- Surface Radiation Budgets
- Soil Moisture Estimation
- Data assimilation
- Combined River/Estuary Modeling
- Ensemble and Probabilistic Streamflow prediction

DMIP 2 and HMT

- An exciting linkage providing:
 - Multi-institutional evaluation of HMT data products in an end-to-end test
 - Advanced data products for evaluating important science questions for RFC river forecasting
 - soil moisture
 - precipitation
 - streamflow

Distributed Model Intercomparison Project (DMIP)

Phase 2 Scope

Tests with Complex Hydrology

- 1. Snow, Rain/snow events
- 2. Soil Moisture
- 3. Lumped vs. Distributed

Additional Tests in DMIP 1 Basins

- 1. Routing
- 2. Soil Moisture
- 3. Lumped vs. Distributed

Precipitation Analysis and Assimilation

- The California/Nevada observational testbed will provide valuable ground-truth observations for comparison with operational remote sensing systems
- The impact of improved, high-resolution radar and gauge observations on modeling and prediction of streamflow will be assessed
- Methods for automated quality control will be tested

CNRFC 24-Hour Precipitation 17 Dec 2002

Gauge-Radar-Hydroestimator

Ensemble Streamflow Prediction

- Ensemble streamflow prediction requires knowledge of statistical properties related to spatial distribution of temperature and precipitation
- High-resolution observations from HMT could provide valuable information on small-scale variability in this meteorological forcing

Future Ensemble Streamflow Prediction System with Data Assimilation and Explicit Uncertainty Processors

Modeling of the Tar Basin River-Estuary System

- Ongoing effort to estimate precipitation, runoff, river channel flow, and river-estuary interactions in the Tar River Basin of North Carolina
- Joint effort among NSSL, NCSU, NOAA NWS
- Major goals are refinement of multisensor precipitation algorithms, river channel model, estuary model
- Experiments will benefit from intensive observations in the testbed area; models can provide validation of observations

Summary

- OHD has carried out extensive intercomparisons of hydrologic models, precipitation estimation systems, and remote sensing systems
- Inhouse expertise will be devoted to evaluation of observations from HMT systems

Estimates of Freezing Level Height and Surface Precipitation Type

- Particularly in mountainous terrain, realtime estimation of freezing level height and snow level are crucial to effective modeling of runoff
- Profiler and WSR-88D observations can provide physical evidence of level at which snow begins to melt, and lowest level at which precipitation remains frozen

WSR-88D and Profiler Estimates of Freezing Level Height

Circles: Profiler

Crosses: WSR-88D

Upper figure: SNR

Lower figure: vertical

velocity

Data from Astoria OR profiler and Portland OR WSR-88D

28 Jan 20<mark>04</mark>